Fire and Explosion Hazards with Thermal Fluid Systems

نویسنده

  • Alison McKay
چکیده

Incidents relating to thermal fluid systems are unfortunately more common than we might realise, and can be extremely serious. The fire and explosion hazards with thermal fluid systems have been re-emphasised by recent incidents. These incidents have a direct bearing on the estimated 4,000 UK companies that operate thermal fluid systems. Water or steam can be used as heat transfer fluids, but when high temperatures are needed organic fluids, which are capable of forming explosive atmospheres, are often used. Although fire and explosion hazards of low flash point flammable liquids are generally recognised, similar hazards with high flash point materials, such as thermal fluids, are often missed. These heat transfer fluids are often handled at temperatures above their flash point. The Health and Safety Executive recently issued a prohibition notice to a UK company following a major thermal fluid incident and significantly, following that incident, has identified thermal fluid systems as a fire and explosion hazard. There have been other serious incidents this year. Although not under HSE jurisdiction, there was a recent thermal fluid-related explosion and fire at a German panel products plant which tragically caused three fatalities. Most companies will be aware that any system that operates above the flash point of the thermal fluid falls under the “Dangerous Substances and Explosive Atmosphere” Regulations 2002 (DSEAR). However, many people are unaware that heat transfer fluids based on mineral oils degrade over time. This degradation can cause the fluid’s flash point to decrease dramatically, so that thermal fluids which were not flammable at the operating temperature when they were initially installed may, over time, become flammable at the operating conditions. Also, high flash point materials (such as thermal fluids), can form explosive mist atmospheres when handled under pressure, even at temperatures below the flash point. The DSEAR regulations require that the risk from dangerous substances (flammable materials) is assessed and eliminated or reduced. Systems need to be put in place to reduce the risk and manage the residual risk. The ATEX directives require the hazardous areas to be identified. Regular thermal fluid testing and the results obtained will indicate the physical condition of the fluid and the degree of risk in the event of a fluid release. However, flash point testing alone is not enough to comply with DSEAR. Procedures are also needed to change out the thermal fluid, or remove the lower flash point components from the thermal fluid. Many companies operating thermal fluid systems may not be aware of this. This paper discusses recent incidents of fires and explosions which have occurred in thermal fluid systems, and makes practical recommendations for how such incidents can be avoided. These include carrying out Area Classification on thermal fluid systems, methods to avoid or limit mist formation, avoiding ignition sources and installing proprietary equipment which removes the lower flash point components from the thermal fluid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fire and explosion risk assessment in a chemical company by the application of DOW fire and explosion index

Background: Fire and explosion hazards are extremely important in processing units. This study was performed to identify the risk centers, the potential damage caused by fire and explosion, and the days of production cessation in the processing company. Materials and Methods: The present qualitative case study was conducted using Dow’s index in 2015. The fire and explosion hazard index...

متن کامل

تعیین ریسک کمی حریق وانفجار در یک واحد فرایندی به روش شاخص حریق وانفجار DOW

  Background and aims   Fire and explosion hazards are the first and second of major hazards in process industries, respectively. This study has been done to determine fire and explosion risk severity,radius of exposure and estimating of most probable loss.   Methods   In this quantitative study process unit has been selected with affecting parameters on  fire and explosion risk. Then, it was a...

متن کامل

Investigating the Economic Consequences of Fire and Explosion Domino Phenomenon in Oil Refinery Storage Tanks

ABSTRACT Background and aims: Identifying the costs of accidents and modeling them can encourage industries to build safety systems. Oil derivatives storage tanks are among the most important industrial facilities that are always effective in domino effects in the oil industry. Therefore, the present study investigated the economic consequences of the fire and explosion domino phenomenon in oi...

متن کامل

A Review of the Fire and Explosion Hazards of Particulates

Particulate fires and explosions cause substantial loss of life and property. With the goal of understanding, preventing, or at least mitigating particulate fire and explosion hazards, we review basics. We distinguish between ‘hazard’ and ‘risk’ and discuss the fire and explosion hazards of particulates, the many factors determining such hazards, hazard indexes, and ways to reduce fire and expl...

متن کامل

Fire Hazards of Refrigerants in Air Conditioning Control System

Air conditioning control systems are commonly installed in restaurants, commercial buildings, office buildings and institutional buildings in Hong Kong. The systems invariably involve the use of fans for moving the air, filters for cleansing, ducts for air distribution, a control system for regulating the amount of heating or cooling automatically and a refrigerating plant connected to the heat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011